Discontinuous Galerkin methods

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous Galerkin methods

This paper is a short essay on discontinuous Galerkin methods intended for a very wide audience.We present the discontinuous Galerkin methods and describe and discuss their main features. Since the methods use completely discontinuous approximations, they produce mass matrices that are block-diagonal. This renders the methods highly parallelizable when applied to hyperbolic problems. Another co...

متن کامل

Plane Wave Discontinuous Galerkin Methods

Standard low order Lagrangian finite element discretization of boundary value problems for the Helmholtz equation −∆u−ωu = f are afflicted with the so-called pollution phenomenon: though for sufficiently small hω an accurate approximation of u is possible, the Galerkin procedure fails to provide it. Attempts to remedy this have focused on incorporating extra information in the form of plane wav...

متن کامل

On Discontinuous Galerkin Multiscale Methods

In this thesis a new multiscale method, the discontinuous Galerkin multiscale method, is proposed. The method uses localized fine scale computations to correct a global coarse scale equation and thereby takes the fine scale features into account. We show a priori error bounds for convection dominated convection-diffusion-reaction problems with variable coefficients. We present an posteriori err...

متن کامل

Higher-order Immersed Discontinuous Galerkin Methods

We propose new discontinuous finite element methods that can be applied to one-dimensional elliptic problems with discontinuous coefficients. These methods are based on a class of higher degree immersed finite element spaces and can be used with a mesh independent of the location of coefficient discontinuity. Numerical experiments are presented to show that these methods can achieve optimal con...

متن کامل

Adaptive spacetime meshing for discontinuous Galerkin methods

Spacetime-discontinuous Galerkin (SDG) finite element methods are used to solve hyperbolic spacetime partial differential equations (PDEs) to accurately model wave propagation phenomena arising in important applications in science and engineering. Tent Pitcher is a specialized algorithm, invented by Üngör and Sheffer [2000], and extended by Erickson et al. [2005], to construct an unstructured s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ZAMM

سال: 2003

ISSN: 0044-2267,1521-4001

DOI: 10.1002/zamm.200310088